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ABSTRACT 

For compact groups several necessary and sufficient conditions for a set to be 
local Sidon are given; these conditions are expressed in functional-analytic 
terms. An immediate corollary is the existence of a large class of compact groups 
G, including all the connected non-Abelian Lie groups, which support functions 
not in A(G) but having Fourier series that are both uniformly and absolutely 
convergent. This has been shown for the special case of SU(2) by Mayer. Also 
several necessary and sufficient conditions for a set to be local A (p) are given. 

1. Introduction 

Throughout we suppose that G is a Hausdorff compact group and that F 

denotes a maximal set of inequivalent continuous representations of G which are 

unitary and irreducible. The symbols C and L p will denote the spaces of  continu- 

ous functions and p-integrable functions on G respectively and their respective 

norms will be denoted by I1" II and II "lip. If  f e  L 1, its Fourier series will be 

written as 

f ~ ~ d(?) tr l f (? )?("  )] 
~/eF 

where d(?) is the degree of  the representation ?, tr is the usual trace function, 

and f (?)  = f. af(x)?(x-l)dx, dx being the normalised Haar measure. The space 

A(G), or simply A, is defined as the set o f f  in C such that 

Ilsll., - E~ d(?)trl-lf(?)]] < oo. 

We are now able to follow Rider [6] and give the definitions of local Sidon and 

local A(p) sets. 

DEFINITIONS. A set E c F is said to be local Sidon if there exists a number 

B > 0 such that 
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(1.1) II s I1,, <-- B Ilsll 
for all functions f of the form 

(1.2) f = d(7)tr[f(7)~], ~ ~ E. 

A set E ~ F is said to be local A(p), p > 0, if there exists a number B such that, 

for some r satisfying 0 < r < p, 

(1.3) I l f l l ,  =< ~ Ilfl l, 
for all functions satisfying (1.2). 

PROPOSmON 1.1. 

(i) A set E c_ F is local A(p) if and only if to every r satisfying 0 < r < p 

there exists B such that (1.3) is satisfied for all functions of the form (1.2), 

(ii) A local Sidon set is local A(p)for all p > O. 

(iii) The union of two local Sidon sets (respectively, local A(p) sets) is a 

local Sidon set (respectively, local A(p) set). 

PROOF. The proof of Part (i) is accomplished by using H61der's inequality 

(see [3, p. 421]); that of Part (ii) can be deduced from a powerful result due to 

Fig~t-Talamanca and Rider (see [2] and also [3, Th. (37.10) and its proof]); 
while that of Part (iii) is trivial. 

The necessary and sufficient conditions for a set to be local Sidon or local 

A(p) will, in the main, be expressed in terms of the spaces CC and CL ~. We say 

that f e  CC or that f has a convergent-in-norm Fourier series (respectively, 

f e  CL p or that f has a convergent-in-p-norm Fourier series) if f ~ L  t and 

Hfkc - ~ d(~)lltr[:(~)~] II < | 

(respectively, 

Ilfllc,., --- z d(3,)II tr[.~(y)~,] II, < ~). 

Clearly II" llcc and If" Ilc,., are norms on CC and CL' respectively under which 
they become Banach spaces. 

It is easily seen that every convergent-in-norm Fourier series is both uniformly 

and absolutely convergent. When B is abelian, (unconditional) uniform con- 

vergence, absolute convergence, and convergence-in-norm are each equivalent 

to membership of A; also every subset of F is local Sidon. On the other hand, 

when G = SU(2), [4, Th. 4.1] shows the existence of a function in CC which 

is not a member of A, while [5] shows that every infinite subset of F is not a 
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a local A(p) set for any p > 0 and hence not a local Sidon set. These results are 

linked by the prototype proposition that E _c F is a local Sidon set if and only 

if every E-spectral function in CC is a member of A.  

One of the main reasons for the study of local lacunary sets is that it serves 

as a bridge to the study of(global) lacunary sets. For example, see [,1], [5] and [-6]. 

2. Necessary and sufficient conditions 

Necessary and sufficient conditions for a set to be Sidon or A(p) are easily 

given in terms of Banach spaces (or their norms) of E-spectral functions or mea- 

sures and consequently their theory is amenable to the techniques of functional 

analysis. (See [-3, Sect. 37], for example.) In this section we show that conditions 

of this type are also possible for local lacunary sets. Whenever E is a subset of F 

and X is a set of functions or measures, we denote the set of E-spectral members 

of X by Xz. 

THEO~M 2.1. The following conditions on E c_ F are equivalent. 

(i) E is local Sidon. 

(ii) CCz is contained in A (and hence CCE = AE). 

(iii) There exists B = B(E) such that [[f [[a < B IlflIcc for all f �9 CCE. 

PRoof. Clearly (iii) implies (ii) so that their equivalence follows from the 

closed-graph theorem. Suppose that E is local Sidon and that f � 9  CCr. Then, 

using (1.1) for each of the functions fr = d(v)tr[f(y)y], y � 9  we have 

II f I1,, --- ~:~ II f~ I1,, ~ ~ ~:~ II f, II = B II f II c~. 
On the other hand, suppose that (iii) is satisfied. Then, in particular, 

Ilfll~ -<- Bllfllcc-- ~llfll for all f satisfying (1.2). Thus (i) and (ii) are also 

equivalent. 

Before proceeding to the second type of condition equivalent to local sidonicity 

we introduce several spaces. Let ~o = ~ ( F )  denote the set of functions tk on 

F such that 

(i) ~b(~) is an automorphism of the Hilbert space of dimension d(v), and 

(i i) II <s> I1~ - sup (II <~(~')I1<=,: r �9 r )  < oo, 

where II @(r)I1<=> is the norm of ~b(~) as an operator. Denote A',  the space of 

continuous linear functionals on A, by P.  Then P is called the space of pseudo- 

measures on B and can be put in one-to-one correspondence with ~ ;  the element 

~ P corresponds with q$ �9 ~ provided 
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(2.1) ( f , * )  = Y- d(7)tr[f^(7) *qb(7)] 

for all f e  A where �9 denotes the adjoint operation. In this case we will denote 

4(7) by #(7). Given trl, tr 2 e P ,  their convolution is defined as the unique element 

o"1 * a2 of P which has the Fourier transform #2#1(e ~ ) .  

Each continuous linear functional on CC becomes a member of P when its 

domain is restricted to A; thus CC' may be thought of as a space lying between P 

and the space of measures M on G. We define the Fourier transform fl of each 

It ~ CC' via (2.1). Finally each f e  L l will be thought of as a member of P via 

the functional g 4-, f~fg  on A. Then 

(2.2) A c_ CC c_ C o _ M e _  CC' c_P, 

and each of the imbedding maps has norm 1. Furthermore it is easily checked 

that the notions of convolution and Fourier transform defined above are true 

extensions from the cases of functions and measures. (The convolution f *  # 

of L 1 functions f and g is defined to be the function x ~ faf (y)g(y- lx)dx. )  

Given f ~  L 1 , we define the left translation Zaf and the right translation p f f  

o f f  by a e G  as the functions x ~ f ( a x )  and x ~ f ( x a )  respectively. Also f*  

and fv  will denote the functions x ~ f ( x  -I) and x ~ f ( x  -1) respectively. 

LEMMA 2.2. 

(i) For each f e CC and a ~ G, the CC norms of Zaf, p j ,  f v ,  f ,  and f are 

all equal. 

(ii) Given f ~  CC and Ite CC', both # , f  and f ,  it are continuous functions 

with absolutely and un!formly convergent Fourier series and their norms in 

C are bounded by II it llcc, [l f [Icc. 

PROOF. 

(i) [[ %f I[cc= ~ dO')II trl'(zof)^(7)7] II 

= ~ d(7)]l tr]f(7)zoy] I] 

= Z d(7)1] tr[f(7)7] II = It f Ilcc 

and similarly for right translations. 

To complete the proof of Part (i), define ~ to be the member of F which is equi- 

valent to the conjugate representation of 7 as defined in I3, (27.27)]. Then 7 e F 

if and only if ~ e F and moreover ~' = 7. A simple calculation yields (fv) ^ (7) = 

f^(r)* and so 

tr[(fv)^(r)7] = tr[f^(~)7 v] = (tr1-f^(r)r]) * . 
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Also tr[f^(?)r] = t r [ f(f)f] ,  and hence 

[If" lice = II: lice -- x d(~)II tr[-f(~)~] II = II f Ilcc. 
(ii) From the remarks preceding the statement of the lemma, f .  It has the 

formal Fourier series ]~ d(?)tr[-~(?)f(y)y(a)] at the point a .  If we denote 

d(y)tr[f(?)?] by fv, then 

(2.3) [ d(?)tr[p(T)f(y)?(a)] l = 

(2.4) = 

(2.5) = 

(2.6) = 

(2.7) =< 

(2.8) = 

d(?) tr[/2(~)L(?)?(a) ] [ 

d(?) tr[/~(~) (%fv)^(?)] ] 

d(~,) tr Ep(~,) (~oL)*"(~')*] [ 

<(%f~)", .> [ 

(~.f~)"llcc II ~, flee, 
f~l[ccI[.llce,. 

(2.6) following from (2.1) and (2.8) from (i) above. Thus the Fourier series of 

f*  # is absolutely and uniformly convergent and is bounded by ~ llf~ Ilce [1" lice' 

= II f Ilec I[" lice' The corresponding result for # . f  is proved similarly. 

THEOREM 2.3. The following conditions on E c_ F are equivalent. 

(i) E is local Sidon. 

(ii) Corresponding to each dpe~ ~176 there exists lt~ CC' such that dp = 

on E. 

(iii) Corresponding to each dp E~ ~176 with dp(?) unitary for each ? ~ E ,  there 

exists pc  CC' and 3 > 0 such that 

II qS(?)-/2(y)I[(oo ) < 1 - 6  for each ~ e E .  

PROOF. The proof that (i) implies (ii) carries over immediately from the proof 

of the corresponding result for Sidon sets (see [-3, p. 417], for example). Clearly 

(ii) implies (iii) and we close the circle of implications by proving that (iii) implies 

(i). (This proof will also be similar to the proof for the Sidon case.) 

Suppose that (iii) is valid and that f e  CCE. Since f can always be written as 

f l  + if2 where each f j  satisfies fj = f j*,  in order to prove 2.1(ii) it suffices to 

show that f e  A only in the case that f = f * .  Hence Theorem 2.1 will show that 

E is local Sidon. Corresponding to each ~ ~ E there exists a unitary self-adjoint 

operator W(?) such that W(v)f(?)= I:(~)l. From (iii) there exists # e  CC' 

and 6 > 0 such that 

II w(T) - ~(r)11,~, --< 1 - ~ for each T e E. 
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Let v = �89 + #*); then each 9(~) is self-adjoint and so 

II w(~) - 9(v)II(=> =< + 11 w(~) - ~(v)I1<=, + + II w(v)* - ~(~)* II,=) 
< 1 -  t~ for ~ e E .  

Put # = f ,  v; from Lemma 2.2(ii)we know that g e C. Also tr[ g(~,)] is real-valued 

and moreover 

]tr[~(?)] - tr[] f(r)I]1 = ] tr[9(r)f(~) - w(r)f(r)]  [ 

= II 9(r)- w(r) ll<oo>trEl.~(w)]] 
__< (1 - 6)trE] f(: , ) l - I ,  

and so tr[~(~)] __> 6 trill(r)l] for ~ e E.  Thus tr[~(~)] is real and non-negative 

for all ~ e E and so from ([3, (34.9)1 we have 

6 s d(e)trEl$(e) 1] < :~ d(~,)tr[~(~)] =< Ilgll < + .  

Thus f e  A and the proof is completed. 

THEO~M 2.4. Given pc(O, ~ ) ,  the following conditions on E c_ F are equi- 

valent. 

(i) E is local A(p). 

(ii) There exists r in (O,p) and B = B(E) such that llflrc,,---~ IlfllcL- 
for all f in CE .  

(iii) For every r in (0, p)there exists B = B(E, r) such that I1 f II-p --< n II f I1~, 
for all f in CE.  

(iv) CL" = CL p for all r e (0, p). 

(v) There exists r in (0, p) and B = B(E) such that [] f lip < B [] f][cr , .  

(vi) For every r in (O,p) there exists B = B(E,r) such that [[fllp_~ B[lf[lcL,. 

Apart from a use of Proposition 1.1 (i), the proofs are similar to those of Theo- 

rem 2.1 and hence will be omitted. 

3. Examples and applications 

Sufficient conditions. Let E ~ F; then f e  d(~)tr[f(~)~], 7 ~ E ,  satisfies 

II f II,, = d(~,)tr[-] f (v ) [ ]  

< d(r)l lf[l :  by [3, (D. 51)], 

:< d(r) IlSll. 
Thus E is local Sidon and hence local A(p) whenever 
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(3.1) sup{d0,): ~ e E} is finite. 

3.2 Necessary conditions. An example due to Fig~t-Talamanca and Rider [2] 

shows that, in general, condition (3.1) is not necessary for a set to be local Sidon 

(or even Sidon). However Cecchini [1] has shown that when B is a compact Lie 

group, then (3.1) is a necessary condition for a set to be local A(4), and hence 

for a set to be local Sidon. Thus we have proved the statement in the abstract 

since whenever G is a compact Lie group with E = F satisfying (3.1), then F 

is not local Sidon and so from Theorem 2.1 there exists f in CC (and hence the 

Fourier series o f f  is uniformly and absolutely convergent) such that f is not a 

member of A. Also the method of Fig~t-Talamanca as described in [3, (37.23)], 

for example, shows that the duals of certain infinite products of finite groups 

contain sets which are not local Sidon or local A(p), p > 0. 

The author was not able to decide the validity of the statement that F is never 

local Sidon (or local A(p)) whenever the degrees of the representations in F are 

unbounded. 

ADDED IN PROOF 

M. A. Picardello (Some random Fourier series on compact noncommutative 

groups, to appear) has also considered this question and has given a sufficient 

condition for a set to be local A(p) in terms of Steinhaus random Fourier series. 

He has also shown that the dual of an infinite product of non-abelian compact 

groups is not local A(4). 
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